Biogeosciences Discuss., 6, 9701–9735, 2009 www.biogeosciences-discuss.net/6/9701/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean

C. Dumousseaud¹, E. P. Achterberg¹, T. Tyrrell¹, A. Charalampopoulou¹, U. Schuster², M. Hartman¹, and D. J. Hydes¹

Received: 15 September 2009 – Accepted: 16 September 2009 – Published: 8 October 2009

Correspondence to: E. P. Achterberg (eric@noc.soton.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

▶I

Close

Title Page Abstract Conclusions **Tables** Back Full Screen / Esc

Printer-friendly Version

¹National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK

²School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, UK

Abstract

Future climate change due to the increase in atmospheric CO₂ concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary productivity and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached 500 m in the Bay of Biscay, whilst during the warmer (by 2.6±0.5°C) winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate $(2.8\pm1.1\,\mu\text{mol I}^{-1})$ and dissolved inorganic carbon $(22\pm6\,\mu\text{mol}\,\text{I}^{-1})$, with higher concentrations at the end of the colder winter (2005/2006), led to differences in the dissolved oxygen anomaly and the fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO_2 fluxes (ranging from +4.5 to -5.5 mmol m⁻² d⁻¹) showed an increased oceanic CO₂ uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.

Introduction

Since the late 1700s, the atmospheric concentration of CO₂ has increased from 280 to 380 ppm and the oceans have absorbed about half of the anthropogenic CO2 emitted to the atmosphere (Sabine et al., 2004). While some oceanic regions act as a source of CO₂ to the atmosphere, the North Atlantic Ocean is reported as one of the strongest sinks in the world (Takahashi et al., 2009; Takahashi et al., 2002; Gruber et al., 2002). The uptake of atmospheric CO₂ by the oceans is however lowering oceanic pH and the saturation state of calcium carbonate (Orr et al., 2005; Feely et al., 2004; Caldeira and

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

Close

Title Page **Abstract** Conclusions **Tables** Back Full Screen / Esc Printer-friendly Version Interactive Discussion

Wickett, 2003). Coccolithophores, coral reefs and other major calcifiers are expected to be affected by future changes in the oceanic carbonate chemistry and pH (Fabry, 2008).

Climate change is predicted to reduce the capacity of the oceans to absorb CO₂ through a decrease in winter mixing and a consequent reduced nutrient supply to surface layers and lower primary productivity during the following spring bloom (Sarmiento et al., 1998; Bopp et al., 2001; Doney et al., 2009). The North Atlantic sink of CO₂ has been in decline during the last few decades, related to changes in the North Atlantic Oscillation (NAO), surface circulation, vertical winter mixing, inorganic carbon chemistry, and/or sea surface warming (Schuster et al., 2009; Doney et al., 2009; Schuster and Watson, 2007; Corbière et al., 2007; Thomas et al., 2008).

However, the natural small-scale variability of the carbonate system observed in the oceans on a seasonal and inter-annual basis often makes the prediction of long-term impacts more difficult (Bates et al., 1996a), and highlights the importance of understanding the variability of the carbonate system on a regional and global scale. Timeseries programs such as the Bermuda Atlantic Time-Series (BATS), the European Station for Time-series in the Ocean, Canary Islands (ESTOC), and the Hawaii Ocean Time-Series (HOTS) have improved our understanding of the processes affecting the carbonate system (e.g. Bates et al., 2007; González-Dávila et al., 2003; Dore et al., 2009). A significant number of other high-resolution observational programs are now operational (Doney et al., 2009), including observations from ships of opportunity as part of the FerryBox program and the CarboOcean project.

The FerryBox route presented in this study covers about 1000 km from the highly productive and shallow coastal waters of the English Channel, to the deep oligotrophic waters of the Bay of Biscay. Due to a complex physical context, the carbonate system and primary production in the English Channel and adjacent areas are subject to large seasonal and spatial variability (Frankignoulle et al., 1996a, b; Wollast and Chou, 2001; Bargeron et al., 2006). Michel et al. (2009) showed a continuous increase in sea surface temperature in the Bay of Biscay over the last 30 years, strongly correlated

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

Close

with the NAO index. Furthermore, Padin et al. (2009) calculated a decrease in the net air-sea CO₂ flux between 1997 and 2004 for this oceanic region.

The observations made on a ship of opportunity, the MV *Pride of Bilbao*, constitute a unique dataset of carbonate chemistry measurements and coccolithophore abundances in the Northeast Atlantic Ocean surface waters, for two consecutive years. The aim of this work was to observe the seasonal and inter-annual variability of the carbonate system and the air-sea CO₂ flux in the English Channel and the Bay of Biscay. These observations, linked with the changes in winter mixing observed within the two years of our study, will provide a better understanding on how this ocean region may be affected by future climate change.

2 Methods

2.1 Area of study

The sample collection was undertaken on the ship of opportunity MV *Pride of Bilbao*, a passenger ferry undertaking weekly crossings between Portsmouth (UK) and Bilbao (Spain). The route covers the area between the Portsmouth harbour and the Iberian shelf (Fig. 1), crossing eight regions of different oceanographic characteristics (Bargeron et al., 2006). However, only the section between the Central English Channel and the Southern Bay of Biscay will be taken into account in this study (zones 2 to 7 in Fig. 1), as no samples were collected in the harbour regions. Thirteen crossings were occupied by researchers between September 2005 and July 2007 (Table 1).

2.2 Sampling

All samples were collected from the ship's underway supply (intake at about 5 m depth). Samples for Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) were drawn in 250 ml borosilicate glass bottles (Schott Duran), with a head space of 1% (2.5 ml)

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

allowed for water expansion, and immediately poisoned with $50 \,\mu$ I saturated solution of mercuric chloride to prevent further biological activity (Dickson et al., 2007). Samples were stored for later analysis in the laboratory.

Continuous temperature, conductivity and chlorophyll-a-fluorescence measurements were obtained from a MINIpack system (Chelsea Technologies Group, UK) installed on the ship (Hydes et al., 2003). The salinity data was calibrated using samples taken every two hours on each researcher-occupied crossing and analysed at the NOCS calibration laboratory using a salinometer (8400 B Autosal, Guildline, Canada). Nutrient samples were collected every half hour during the occupied crossings and analysed at NOCS using standard methods on an auto-analyser for silicate, nitrate and phosphate (Grasshoff, 1983). Dissolved oxygen concentrations were obtained using an optode (3930, Aanderaa, Norway) installed on the ship, and calibrated with discrete samples collected every hour and analysed on board by Winkler titration (Hydes et al., 2009).

2.3 DIC and TA measurements

The analysis of DIC and TA was undertaken using the VINDTA 3C (Marianda, Germany). The DIC samples were analysed using a coulometric titration (coulometer 5011, UIC, USA) and TA was determined using a closed-cell titration according to Dickson et al. (2007). The cell (100 ml) for the TA determination was equipped with a pH half cell electrode (glass bodied Orion 8101SC, Ross, USA) and an Ag/AgCl reference electrode (model 6.0729.100, Metrohm, Switzerland). The calculation of TA was based on a non-linear curve fitting (least-squares) approach (Dickson et al., 2007). All samples were analyzed at 25°C (\pm 0.1°C) with temperature regulation using a water-bath (Julabo F12, Germany). Repeated measurements on the same batch of seawater ($n \ge 3$) were undertaken every day prior to sample analysis, in order to assess the precision of the method which was estimated for the whole dataset to be $1.1\pm0.5\,\mu$ mol kg⁻¹ for DIC and $1.1\pm0.6\,\mu$ mol kg⁻¹ for TA. The analytical precision hence was within the previously reported precision range for TA and DIC measurements (Bates et al., 1996a, b; Millero et al., 1998a). Certified Reference Materials (from A.G. Dickson, Scripps

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

C. Dumousseaud et al.

Title Page Introduction **Abstract** Conclusions References **Tables Figures** Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

Institution of Oceanography) were analysed as standards to calibrate the instrument at the beginning and end of each day of analysis. A daily correction factor was applied to all measured values according to Millero et al. (1998b), in order to standardize the results. To remove the influence of salinity on the distribution of DIC and TA, the data was normalized (nDIC and nTA) to a salinity of 35 (Millero et al., 1998a).

The fugacity of CO₂ (fCO₂) measurements available for the English Channel for the period 2006 and 2007 from the ship of opportunity MV Santa Maria (Schuster et al., 2009; Fig. 1) were used along with our TA, temperature, salinity and nutrient data to calculate values of DIC using the CO₂SYS program (Pierrot et al., 2006). The equilibrium constants of CO₂ from Mehrbach et al. (1973), refitted by Dickson and Millero (1987), were used for the calculation (Wanninkhof et al., 1999). The uncertainty in the calculation of DIC from TA and fCO_2 measurements was estimated to $\pm 3.4 \,\mu$ mol kg⁻¹ (Zeebe and Wolf-Gladrow, 2001). The calculated DIC values were compared against the measured values and showed good agreement ($\pm 4-6 \mu$ mol kg⁻¹), with the exception of the February, April, May and June 2007 data. From these comparisons it became apparent that, despite no evident problem with the analysis, some of the 2007 DIC data required correction. The calculated DIC concentrations for the English Channel were used where direct comparison with the MV Santa Maria data was possible and a monthly correction factor of 2% (calculated from the ratio between the measured and the calculated DIC concentrations) was applied to the 2007 data for the regions where no fCO_2 data were available.

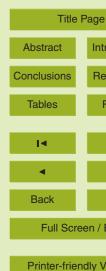
2.4 Coccolithophore abundance

Seawater samples were pre-filtered through a $200\,\mu\mathrm{m}$ mesh to prevent zooplankton grazing during the filtration. The samples were filtered onto $0.4\,\mu\mathrm{m}$ membrane filters of 47 mm diameter (Isopore, Millipore, USA) using a vacuum of 400–500 mm Hg (reduced to 100 mm Hg towards the end of the filtration). A glass fibre filter (GF/F, Whatman, UK) was placed underneath the filters to ensure an even distribution of the material on the filter. Filters were rinsed with an ammonium hydroxide solution (approximate

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic


C. Dumousseaud et al.

Introduction

References

Figures

Close

pH 9 to 10) to remove seawater salts, left to air-dry and stored in dark and dry conditions. Before analysis, a small piece of each filter was cut radially, placed on a stub and gold-coated. The number of coccospheres in each sample was counted under a Scanning Electron Microscope (Leo 1450VP, Carl Zeiss, Germany), using a computer-controlled stage and an automated image-capturing system. A meander-shaped transect was predefined on each filter at a 5000× magnification and the software Smart-SEM (V05.01, Carl Zeiss, Germany) was used to capture and store all images. The image analysis was undertaken until 200–300 coccospheres were counted or 225 fields of view were analyzed (Tyrrell et al., 2008).

2.5 Air-sea CO₂ flux calculation

The air-sea CO₂ fluxes (F, in mmol m⁻² d⁻¹) were calculated as follows (Wanninkhof 1992) for the three day period of each crossing:

$$F = k\alpha \Delta p CO_2 \tag{1}$$

Where $\Delta p \text{CO}_2$ (μ atm) is the difference between oceanic partial pressure of CO_2 ($p \text{CO}_2$) and atmospheric $p \text{CO}_2$ (a negative flux would hence correspond to a net transfer of CO_2 from the atmosphere to the ocean), k is the gas transfer velocity (m s^{-1}), and α is the solubility coefficient of CO_2 ($\text{mol atm}^{-1} \text{ m}^{-3}$). The atmospheric $p \text{CO}_2$ data was obtained from the Mace Head (53.33° N; RAMCES/LSCE monitoring network) and the Azores meteorological stations (38.77° N; NOAA/ESRL Global monitoring division) and averaged for each crossing. The average difference in atmospheric $p \text{CO}_2$ observed between the two stations was 0.8 μ atm. The oceanic $p \text{CO}_2$ data were calculated from the DIC and TA data obtained in this study and averaged for each crossing and each region. The solubility coefficient of CO_2 (α) was calculated according to Weiss (1974). The gas transfer velocity (k) was calculated according to the equations of Nightingale et al. (2000) and Sweeney et al. (2007). The fluxes calculated following these two equations agreed within $\pm 0.05 \, \text{mmol m}^{-2} \, \text{d}^{-1}$. The wind speed data used for the calculation of the gas transfer velocity was obtained from the MET Office Gascogne Buoy

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

hourly data and averaged for each crossing. The wind speed was corrected from 3.5 m (height of the measurement) to 10 m above the surface according to Johnson (1999).

2.6 External sources of data

In addition to the fluorescence data obtained from the MINIpack, the SeaWIFS chlorophyll-a data (NASA Ocean Color Time-Series) from the Bay of Biscay and the English Channel for the period between 2005 and 2007 were used to investigate the interannual variability (http://reason.gsfc.nasa.gov/OPS/Giovanni/ocean.seawifs.shtml).

In order to determine the mixed layer depth (MLD) we used data from five Argo floats located in the Bay of Biscay for the period of our study (4900557, 6900359, 6900360, 6900362, and 6900365, http://www.coriolis.eu.org/cdc/argo.htm). The MLD was estimated according to the temperature-based criteria which defines the MLD as the shallowest depth corresponding to a temperature difference with the surface sea water temperature of more than $\Delta T = 0.5^{\circ}$ C (Monterev and Levitus, 1997).

The North Atlantic Oscillation (NAO) time-series data were obtained from the Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA) (http://www.cpc.noaa.gov/data/teledoc/nao_ts.shtml).

Results and discussion

Salinity, temperature and nitrate

A decrease in salinity and temperature with increasing latitude was observed for each crossing (Fig. 2a and b). The salinity distribution did not show a strong variation throughout the year and ranged for the whole study between 35.2 in the Central English Channel and 35.8 in the Southern Bay of Biscay. Lower salinities of approximately 34.8 were observed in the Ushant region in April 2006 due to freshwater inputs from the French rivers Loire and Gironde (Kelly-Gerreyn et al., 2006). Surface waters in Febru-

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

▶I

Close

Title Page **Abstract** Conclusions **Tables** Back Full Screen / Esc Printer-friendly Version

ary 2007 were warmer than in February 2006 by 2.6±0.5°C for all regions; whereas July 2007 surface water temperatures were lower than July 2006 by 2.0±0.7°C.

Enhanced nitrate concentrations were observed during the winter months, with depleted levels in summer (Fig. 2c). Surface nitrate concentrations were higher during the 2005/2006 winter than during the 2006/2007 winter, whilst summer nitrate concentrations were below $0.05 \,\mu\text{mol I}^{-1}$ for both years and all regions. In the Bay of Biscay, surface nitrate concentrations were higher (up to $8.0 \,\mu\text{mol}\,\text{l}^{-1}$) during the winter 2005/2006 than the values reported for the 2003/2004 winter (up to $4.5 \mu \text{mol I}^{-1}$ in February 2004) by Bargeron et al. (2006), whilst in winter 2006/2007 they were comparable (up to 4.1 μ mol I⁻¹) to those of the 2003/2004 winter (Bargeron et al., 2006). From the English Channel to the Shelf Break, nitrate concentrations in the 2005/2006 winter were similar to the 2003/2004 winter (Bargeron et al., 2006) with an average winter concentration of 7.3 μ mol I⁻¹, whilst during the 2006/2007 winter they were lower than during the winter 2003/2004 (Bargeron et al., 2006) with an average concentration of 5.4 μ mol I⁻¹.

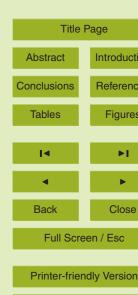
3.2 Dissolved oxygen anomaly and fluorescence

The dissolved oxygen anomaly at standard pressure $(\Delta[O_2]^o)$ was calculated from the measured dissolved oxygen concentration ([O₂]_{obs}) and the saturation oxygen concentration ($[O_2]_{sat}^0$) according to Bargeron et al. (2006). The oxygen anomaly distribution (Fig. 2d) showed maxima during high primary productivity in spring times, and minima during the winter months when oxygen-depleted waters were brought to the surface due to winter mixing (Hydes et al., 2008), resulting in oxygen supersaturated surface waters in spring and undersaturated waters in winter. During spring 2006, dissolved oxygen anomalies were higher than in spring 2007 (up to 53.7 and 39.3 mmol m⁻³, respectively), whilst during the 2005/2006 winter, they were lower than during the 2006/2007 winter (-2.8 and 3.9 mmol m⁻³, respectively). This suggested a shallow winter mixing in 2006/2007, supported by the lower nitrate concentrations (Fig. 2c) observed in the winter of 2006/2007 compared to 2005/2006.

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**


C. Dumousseaud et al.

Introduction

References

Figures

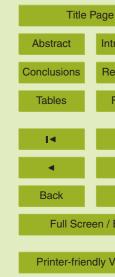
Close

The fluorescence data (Fig. 2e) provide an indication of the timing of peaks in primary production and of biomass present in the water. The data showed a similar temporal distribution to the oxygen anomaly, with maximum values during spring (23.4 and 13.6 arbitrary units for spring 2006 and 2007, respectively) and minimum values during winter. The spring fluorescence maximum in the Northern and Southern Bay of Biscay was almost twice as high (1.7 and 1.8 times higher, respectively) in 2006 compared to 2007 (23.4 and 20.9 arbitrary units in 2006 as opposed to 13.6 and 11.7 in 2007 for the two regions), in agreement with the SeaWIFS time-series chlorophyll-a distributions (Fig. 3). The fluorescence data for the Shelf Break and Ushant regions also indicated enhanced biomass (1.6 times higher) in 2006 compared to 2007 (20.9 and 13.4 arbitrary units in 2006 as opposed to 12.7 and 8.6 in 2007 for the two regions). The English Channel waters have been described as optically-complex case 2 waters (Vantrepotte et al., 2007; Morel and Prieur, 1977) and the interpretation of the optical signal can therefore be difficult and subject to errors. However, the Sea-WIFS time-series chlorophyll-a distributions (Fig. 3) appeared to agree well with the temporal trend of the fluorescence data (Fig. 2e), with little or no inter-annual variability observed in the Central and Western English Channel regions between the two years of our study (12.8 and 13.9 arbitrary units in 2006 and 12.8 and 12.0 in 2007 for the two regions).

3.3 Total alkalinity

The TA concentrations ranged between 2319 μ mol kg⁻¹ and 2363 μ mol kg⁻¹ (Fig. 4a). The normalized TA ranged from 2286 μ mol kg⁻¹ to 2329 μ mol kg⁻¹ (Fig. 4b), with the exception of the Ushant anomaly in April 2006 (nTA=2354 μ mol kg⁻¹) where a salinity anomaly was observed due to the influence of riverine inputs (Fig. 2a). Corbière et al. (2007) reported similar values of nTA ranging between 2327 μ mol kg⁻¹ (winter 2002) and 2289 μ mol kg⁻¹ (summer 2003) for the Northwest Atlantic subpolar gyre. A drawdown in nTA was observed in most of the regions during the crossings of May and July 2006 and corresponded with the highest cell abundances (up to 0.9×10⁶ cells l⁻¹

BGD


6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

and 0.4×10^6 cells l⁻¹, respectively) of *Emiliana huxleyi*, which was the dominant coccolithophore species observed on each crossing. All other crossings showed *E. huxleyi* abundances of less than 0.1×10^6 cells l⁻¹, which was about an order of magnitude lower than values reported during intense coccolithophore blooms in the North Atlantic (Holligan et al., 1993; Robertson et al., 1994).

In order to estimate the maximum TA drawdown (Δ TA) expected from the coccolithophore abundances (C) observed (on the basis of two moles of HCO $_3$ -consumed for each mole of CaCO $_3$ produced), we used an average value of 20 coccoliths per cell (Tyrrell and Young 2009), along with an average calcium content of 0.71 pg Ca per coccolith (Paasche 2002) and a molar mass of calcium (M_{Ca}) of 40.1 g mol⁻¹:

$$\Delta TA = (C * 20 * (0.71/M_{Ca}) * 10^{-6}) * 2$$

The maximum estimated TA drawdown due to the observed coccolithophore abundances was $1 \,\mu \text{mol kg}^{-1}$, whilst the mean observed TA drawdown was $12 \,\mu \text{mol kg}^{-1}$. Hence the estimated TA drawdown only accounted for a small fraction of the observed TA drawdown (between 3 and 10%), which suggests that the seasonal distribution of TA was not primarily controlled by production and dissolution of calcium carbonate (confirmed by the low coccolithophore abundances observed), but by uptake and supply of nitrate (Brewer and Goldman, 1976; Wolf-Gladrow et al., 2007), and freshwater inputs or removal such as mixing, precipitation, evaporation or river inputs (Tseng et al., 2007; Bates et al., 1996b).

The nTA distribution showed little variability, with the exception of the April 2006 data in the Ushant region, which indicated limitation of the normalization procedure when dealing with riverine inputs into coastal waters. In order to validate the TA data, the algorithm from Lee et al. (2006) for the North Atlantic Ocean was used for the winter months to calculate TA from sea surface salinity and sea surface temperature (SST) data. The measured TA showed good consistency with the calculated data, with a mean difference of $5.9\pm4.3\,\mu\text{mol}\,\text{kg}^{-1}$ (n=128), in agreement with the uncertainty reported by Lee et al. (2006).

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

C. Dumousseaud et al.

Title Page

3.4 Dissolved Inorganic Carbon

The DIC concentrations showed an overall increase with latitude for all crossings (Fig. 4c), ranging from 2058 μ mol kg⁻¹ (September 2005, Ushant) to 2142 μ mol kg⁻¹ (April 2006, Western English Channel). The salinity-normalized DIC (nDIC) concentrations (Fig. 4d) ranged from 2020 μ mol kg⁻¹ (July 2006, Southern Bay of Biscay) to 2122 µmol kg⁻¹ (April 2006, Western English Channel). Our DIC observations were in agreement with values previously reported for the North Atlantic by Corbière et al. (2007) and Robertson et al. (1994), where DIC values ranged from 2070 μ mol kg⁻¹ in summer to $2140 \,\mu\text{mol}\,\text{kg}^{-1}$ in winter. This also agrees with the range reported for the Norwegian Sea, with DIC values ranging between $2140 \,\mu\text{mol kg}^{-1}$ in winter and $2050 \,\mu\text{mol kg}^{-1}$ to $2080 \,\mu\text{mol kg}^{-1}$ in summer (Findlay et al., 2008). The spring fluorescence maxima corresponded with periods of DIC drawdown (Figs. 2e and 4c). The DIC distribution showed an increase during the winter months corresponding to the decrease in the SST (Fig. 2b) and the minimum in O₂ anomaly (Fig. 2d). During the winter of 2006/2007, however, the nitrate concentrations and the O₂ anomaly suggested that the winter mixing was shallower than during the 2005/2006 winter for all regions except the Central and Western English Channel (Fig. 2c and d), leading to a smaller increase in the DIC concentration during the winter of 2006/2007 for the same regions.

3.5 Seasonal variability of DIC and nitrate

Surface DIC and nitrate concentrations were higher in winter than in summer as a result of carbon and nutrient enriched deep waters being brought to the surface due to deep winter mixing (Tseng et al., 2007; Bates et al., 1996b). The increase in biomass observed during spring and early summer (as indicated by the fluorescence data in Fig. 2e) resulted in a decrease in DIC concentrations (Fig. 4c), with a DIC minimum of 2063 μ mol kg⁻¹ observed in the Bay of Biscay in July 2006 and June 2007. The average seasonal amplitude for DIC and nitrate concentrations, respectively, from winter to spring was $62 \mu \text{mol kg}^{-1}$ and $7.4 \mu \text{mol I}^{-1}$ in 2005/2006, and $35 \mu \text{mol kg}^{-1}$ and

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

Close

Title Page **Abstract** Conclusions **Tables** Back Full Screen / Esc Printer-friendly Version

 $4.7 \,\mu$ mol I⁻¹ in 2006/2007. From late summer to early winter, an increase in surface water DIC was observed, resulting from the enhanced oceanic CO₂ uptake from the atmosphere due to increasing CO2 solubility in seawater with decreasing air and sea surface temperature (Zeebe and Wolf-Gladrow, 2001). Entrainment by autumn storms 5 of deep waters with higher DIC content also increased surface water DIC concentrations.

Influence of winter mixing on the carbonate system variability

The increase in atmospheric forcing observed over the winter of 2004/2005 in the Bay of Biscay had a strong effect on the surface layer characteristics due to a decrease in SST and enhanced winter mixing (Somavilla et al., 2009). This SST anomaly extended into the following winter (2005/2006), resulting in a second winter of deep winter mixing. The air temperature during the subsequent winter of 2006/2007 was however the warmest on record for about 500 years (Luterbacher et al., 2007), causing warming of the surface ocean and a reduction in winter mixing. The winter MLD in the Bay of Biscay was estimated from the Argo floats temperature data to be between 450 and 550 m in 2005/2006, and between 200 and 300 m in 2006/2007 (Fig. 5). The MLD observed for 2006/2007 corresponded to the average MLD observed between 2002 and 2004 (approximately 200 m) for the Bay of Biscay (Padin et al., 2008). The deeper MLD during the 2005/2006 winter resulted in higher surface winter concentrations of nutrients and DIC, and an enhancement of the spring bloom in the Bay of Biscay in 2006 (Figs. 2e and 3). The intensity of the spring bloom was reduced in 2007 as a result of a reduced winter mixing in 2006/2007. The inter-annual differences in DIC and nitrate concentrations were similarly affected by the difference in winter mixing in the Bay of Biscay, with winter nitrate concentrations 1.6 times higher in 2005/2006 compared with 2006/2007. This agreed with the differences in biomass, derived from the fluorescence data, observed between the two years (ratio of 1.7 between the two years).

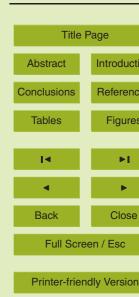
We used a C:N ratio of 8.4 to estimate the seasonal DIC amplitude expected due

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.


Introduction

References

Figures

▶I

Close

to seasonal nitrate drawdown (Table 2). This C:N ratio was shown to give a better estimate of the seasonal carbon consumption between winter and summer than the Redfield ratio of 6.6. This disagreement with the standard Redfield C:N ratio is often observed in coastal waters due to a more efficient recycling of nitrogen compared to carbon (Sambrotto et al., 1993). A similar discrepancy was previously observed in separate studies of the Northeast Atlantic (Körtzinger et al., 2001) and the Norwegian Sea (Findlay et al., 2008), where the use of data on nitrate consumption and a Redfield C:N ratio (6.6) was also shown to significantly underestimate the carbon consumption. A C:N ratio of 8.4 gave a close agreement in our study between the observed seasonal DIC drawdown and the C:N ratio-derived estimate (predicted/observed ratio of 1.08±0.18: Table 2).

The historical time-series of the monthly NAO index showed a dominant negative phase for the period between March 2005 and November 2006 (http://www.cpc. noaa.gov/data/teledoc/nao_ts.shtml), corresponding with the enhanced winter MLD observed in the Bay of Biscay during this period, and a positive phase during the winter of 2006/2007, corresponding with the shallower winter MLD during this period. The surface water nitrate concentration differences between the two winters were used along with a C:N ratio of 8.4 to estimate the influence of winter mixing on the DIC winter concentration (Table 3), and showed a good agreement with the measured winter to winter DIC variability (predicted/observed ratio of 1.07±0.16).

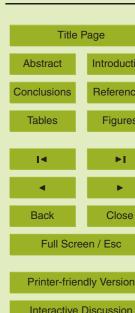
Inter-annual and seasonal variations in DIC concentrations in the North Atlantic Ocean have been reported to be dependent on the winter MLD and SST anomalies (Gruber et al., 2002; Bates, 2001). The NAO has been shown to relate to changes in the MLD associated with anomalies in SST and convection (Dickson et al., 1996; Gruber et al., 2002). In this region, a more negative phase of the NAO is associated with stronger winter mixing, negative SST anomalies, higher winter DIC concentrations (due to the deep supply from vertical mixing) and lower spring/summer DIC concentrations (due to increased primary productivity); whereas a more positive NAO phase is accompanied by warmer SSTs, less intense winter mixing, and a less pronounced

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.


Introduction

References

Figures

▶I

Close

seasonal cycle of DIC (Gruber et al., 2002).

3.7 Air-sea CO₂ fluxes

The calculated air-sea CO₂ fluxes (F_{CO2}) showed significant differences between the various regions (Fig. 6). The English Channel acted as a seasonal source of CO₂ to the atmosphere during autumn and winter months and as a sink during spring and summer months (from $+4.5 \text{ mmol m}^{-2} \text{ d}^{-1}$ in winter, to $-3.3 \text{ mmol m}^{-2} \text{ d}^{-1}$ in summer). This is in agreement with other studies in this area (Frankignoulle et al., 1996a; Borges and Frankignoulle, 2003; Padin et al., 2007). In contrast, the Bay of Biscay acted as a sink of CO₂ during all seasons, with the exception of July 2006 for the Southern Bay of Biscay. Fluxes ranged between +0.2 and -4.7 mmol m⁻² d⁻¹, consistent with the results of Padin et al. (2008, 2009) and Frankignoulle and Borges (2001).

Despite a few gaps in the monthly data available for the flux estimates, a good coverage of the seasonal cycle was available for the two years. The air-sea fluxes showed clear differences between similar months in 2005/2006 compared with 2006/2007 for all regions, apart from the Central English Channel and the Western English Channel. The latter regions did not show a significant difference between the two years (paired ttest, p=0.15, n=12). In all other regions, May, June and July 2007 showed an increase in the oceanic CO₂ sink, with the air-sea fluxes between 1.5 and 6.6 times larger compared with May, June and July 2006 (paired t-test, p=0.0002, n=12). The months of February and April however did not show statistical differences between the two years (paired *t*-test, p=0.06, n=12).

The wind speed (Fig. 7) was higher in May, June and July 2007 compared to 2006, which may have influenced the air-sea CO₂ flux differences observed in the Bay of Biscay, the Ushant front and the Shelf break regions between the two years. The winter 2005/2006 was colder than winter 2006/2007 by 2.6°C, while the summer of 2005/2006 was warmer than the summer of 2006/2007 by 2°C (Fig. 2b). This resulted in winter to summer SST differences of about 8°C in 2005/2006 and 3.4°C in 2006/2007, leading to enhanced solubility of CO₂ in the summer of 2007 compared to 2006. The oceanic

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

Close

Title Page **Abstract** Conclusions **Tables** Back Full Screen / Esc Printer-friendly Version

pCO₂ and the CO₂ fluxes were fairly similar in the two winters (Figs. 6 and 7), which can be explained by the high DIC and low SST during the first winter and the low DIC and high SST during the following winter.

After the colder winter (2005/2006), the following seasonal changes occurred 5 upon transition to summer (with their estimated impacts on the air-sea CO2 flux, in mmol m⁻² d⁻¹, given in brackets, see Table 4 for method of calculation): wind speed decreased by 4 m s⁻¹ (+0.9); temperature increased by 8°C (+5.7); and DIC decreased by $67 \,\mu\text{mol kg}^{-1}$ (-6.2). After the warmer winter of 2006/2007 however, the following seasonal changes occurred: wind speed decreased by 3 m s⁻¹ (+0.7); temperature increased by 3.4°C (+2.5); and DIC decreased by 46 μ mol kg⁻¹ (-4.0). The seasonal changes in DIC and SST both had important impacts on air-sea flux of CO₂ (Table 4). In terms of differences between years, it appears that the effects on air-sea CO₂ flux of the greater seasonal warming following the colder winter (+3.2) and lower wind speed (+0.2) outweighed the effect of stronger spring blooms in 2006 (-2.2). According to our analysis, the effect of the difference in winter mixing between the two years was therefore counteracted and in fact overwhelmed by the greater amount of warming of the surface waters. It was this latter factor, we calculate, which led to a stronger CO₂ sink in summer 2007 compared to summer 2006. Our observations for the Bay of Biscay are consequently in contrast to recent model results for the stratified northern North Sea, where biological productivity, and not temperature, was emphasized as the main driver for the air-sea flux of CO₂ (Prowe et al., 2009).

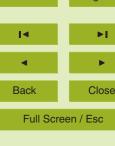
Conclusions

The changes in winter mixing and SST observed between the two consecutive years of our study period showed lower-amplitude seasonal cycles of nitrate and DIC and an associated decrease in primary productivity following the warmer winter of 2006/2007. While no particular changes were observed in the English Channel regions, elsewhere an enhanced carbon uptake from the atmosphere to the ocean was observed in the

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**


C. Dumousseaud et al.

Introduction

References

Figures

Title Page **Abstract** Conclusions **Tables** Back Printer-friendly Version

summer of 2007 compared to the summer of 2006. This occurred despite more intense phytoplankton blooms in spring 2006 compared with 2007. We attribute the surprisingly lower ocean carbon uptake in summer 2006 to a greater amount of warming from winter to summer (SST increase of 8°C between February and July in 2006, compared with only 3.4°C in 2007). This greater degree of warming tended to increase surface ocean pCO₂ towards higher values in summer 2006, and was sufficiently strong to offset the effects of the stronger phytoplankton blooms in that year. Stronger winds in summer 2007 compared with summer 2006 also contributed to an increased carbon uptake in summer 2007. While upper ocean stratification is expected to increase due to further CO₂ emissions, with the prediction that this will lead to decreased oceanic CO₂ uptake, we show in this study that a decrease in winter mixing can be followed by an increase in oceanic CO₂ uptake during the following summer. Our study highlights the importance of winter to summer temperature differences in controlling the annual CO₂ sink in temperate waters. Our results are in contrast with some model predictions and must be considered in the future in order to understand how the oceans will respond to future climate change and accompanying changes in stratification and storm frequency.

Acknowledgements. We thank P&O Ferries Ltd., UK, and Seatrade Reefer Chartering, Belgium, for providing access to their ships. We thank the captains, officers, and crew of P&O Pride of Bilbao and MV Santa Maria for their assistance on all the crossings. Additional thanks go to the FerryBox team for the help provided in the maintenance of the FerryBox system and on the calibration crossings, more particularly Sue Hartman, Jon Campbell, Navjit Sagoo, Holly Niner, and Angus Roberts for their help with data collection and analysis. We are also very grateful to Alberto Borges. This study was financially supported by a NOCS PhD studentship funding to CD, NOCS and Oceans 2025 PhD studentship funding to AC, the NERC UK SOLAS grant (NE/C001931/1) and the European funded integrated projects CARBOOCEAN (grant number EVK2-CT-2000-00088) and EPOCA. This work is a contribution to the "European Project on Ocean Acidification" (EPOCA) which received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement nr. 211384.

BGD

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Figures

Close

References

- Bargeron, C. P., Hydes, D. J., Woolf, D. K., Kelly-Gerreyn, B. A., and Qurban, M. A.: A regional analysis of new production on the northwest European shelf using oxygen fluxes and a ship-of-opportunity, Estuarine, Coastal and Shelf Science, 69, 478–490, 2006.
- Bates, N. R.: Interannual variability of the oceanic CO₂ sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res., 112, C09013, doi:10.1029/2006JC003759, 2007.
 - Bates, N. R.: Interannual variability of oceanic CO₂ and biogeochemical properties in the Western North Atlantic subtropical gyre, Deep-Sea Res. II, 48, 1507–1528, 2001.
 - Bates, N. R., Michaels, A. F., and Knap, A. H.: Seasonal and interannual variability of oceanic carbon dioxide species at the US JGOFS Bermuda Atlantic time-series study (BATS) site, Deep-Sea Res. II, 43, 347–383, 1996a.
 - Bates, N. R., Michaels, A. F., and Knap, A. H.: Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification?, Mar. Chem., 51, 347–358, 1996b.
- Bopp, L., Monfray, P., Aumont, O., Dufresne, J.-L., Le Treut, H., Madec, G., Terray, L., and Orr, J. C.: Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15, 81–99, 2001.
 - Borges, A. V. and Frankignoulle, M.: Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas, J. Geophys. Res., 108, C53140, doi:10.1029/2000JC000571, 2003.
 - Brewer, P. G. and Goldman, J. C.: Alkalinity changes generated by phytoplankton growth, Limnol. Oceanogr., 21, 108–117, 1976.
 - Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature, 425, 365, 2003.
 - Corbière, A., Metzl, N., Reverdin, G., Brunet, C., and Takahashi, T.: Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre, Tellus, B, 59, 168–178, 2007.
 - Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, IOCCP report No. 8, 191 pp, 2007.
 - Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
 - Dickson, R., Lazier, J., Meincke, J., Rhines, P., and Swift, J.: Long-term coordinated changes in the convective activity of the North Atlantic, Prog. Oceanog., 38, 241–295, 1996.

BGD

6, 9701–9735, 2009

Forcings on carbonate system in Northeast Atlantic

C. Dumousseaud et al.

Title Page

- Doney, S. C., Tilbrook, B., Roy, S., Metzl, N., Le Quéré, C., Hood, M., Feely, R. A., and Bakker, D.: Surface-ocean CO₂ variability and vulnerability, Deep-Sea Res. II, 56, 504–511, 2009.
- Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.: Physical and biogeochemical modulation of ocean acidification in the central North Pacific, Proc. Natl Acad. Sci., 106, 12235-12240, 2009.
- Fabry, V. J.: Marine calcifiers in a high-CO₂ ocean, Science, 320, 1020-1022, 2008.
- Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J.: Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans, Science, 305, 362–366, 2004.
- Findlay, H. S., Tyrrell, T., Bellerby, R. G. J., Merico, A., and Skjelvan, I.: Carbon and nutrient mixed layer dynamics in the Norwegian Sea, Biogeosciences, 5, 1395-1410, 2008, http://www.biogeosciences.net/5/1395/2008/.
 - Frankignoulle, M. and Borges, A. V.: European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 15, 569–576, 2001.
- Frankignoulle, M., Bourge, I., Canon, C., and Dauby, P.: Distribution of surface seawater partial CO₂ pressure in the English Channel and in the Southern Bight of the North Sea, Cont. Shelf Res., 16, 381-395, 1996a.
 - Frankignoulle, M., Elskens, M., Biondo, R., Bourge, I., Canon, Ch., Desgain, S., and Dauby, P.: Distribution of inorganic carbon and related parameters in surface seawater of the English Channel during spring 1994, J. Mar. Syst., 7, 427–434, 1996b.
 - González-Dávila, M. and Santana-Casiano, J. M.: Seasonal and interannual variability of seasurface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000, Global Biogeochem. Cycles, 17, 1076, doi:10.1029/2002GB001993, 2003.
- Grasshoff, K.: Determination of nutrients, in: Methods of Seawater Analysis, second edition, edited by: Grasshoff, K., Ehrhardt, M., and Kremling, K., Verlag Chemie GmbH, Basel, pp. 125–188, 419 pp., 1983.
 - Gruber, N., Keeling, C. D., and Bates, N. R.: Interannual variability in the North Atlantic Ocean carbon sink, Science, 298, 2374-2378, 2002.
- Holligan, P. M., Fernández, E., Aiken, J., Balch, W. M., Boyd, P., Burkill, P. H., Finch, M., Groom, S. B., Malin, G., Muller, K., Purdie, D. A., Robinson, C., Trees, C. C., Turner, S. M., and van der Wal, P.: A biogeochemical study of the coccolithophore, Emiliana huxleyi, in the North Atlantic, Global Biogeochem. Cycles, 7, 879-900, 1993.

6, 9701–9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

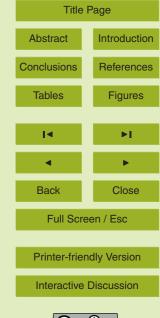
C. Dumousseaud et al.

Introduction

References

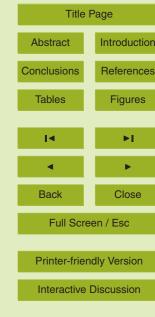
Figures

Close


Title Page Abstract Conclusions **Tables** Back Full Screen / Esc Printer-friendly Version

- Hydes, D. J., Hartman, M. C., Kaiser, J., and Campbell, J. M.: Measurement of dissolved oxygen using optodes in a FerryBox system, Estuarine, Coastal and Shelf Science, 83, 485–490, doi:10.1016/j.ecss.2009.04.014, 2009.
- Hydes, D. J., Hartman, M. C., Bargeron, C. P., Campbell, J. M., Curé, M. S., and Woolf, D. K.: A study of gas exchange during the transition from deep winter mixing to spring bloom in the Bay of Biscay measured by continuous observation from a ship of opportunity, J. Operational Oceanography, 1(2), 41–50, 2008.
- Hydes, D. J., Yool, A., Campbell, J. M., Crisp, N. A., Dodgson, J., Dupee, B., Edwards, M., Hartman, S. E., Kelly-Gerreyn, B. A., Lavin, A. M., González-Pola, C. M., and Miller, P.: Use of a Ferry-Box system to look at shelf sea and ocean margin processes, in: Building of the European Capacity in Operational Oceanography, edited by: Dahlin, H., Flemming, N. C., Nittis, K., and Petersson, S. E., Elsevier Oceanography Series, 69, 297–303, 2003.
- Johnson, H. K.: Simple expressions for correcting wind speed data for elevation, Coastal Engineering, 36, 263–269, 1999.
- Kelly-Gerreyn, B. A., Hydes, D. J., Jégou, A. M., Lazure, P., Fernand, L. J., Puillat, I., and Garcia-Soto, C.: Low salinity intrusions in the western English Channel, Cont. Shelf Res., 26, 1241–1257, 2006.
 - Körtzinger, A., Koeve, W., Kähler, P., and Mintrop, L.: C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean, Deep-Sea Res. I, 48, 661–688, 2001.
- Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R. A., and Key, R. M.: Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans, Geophys. Res. Lett., 33, L19605, doi:10.1029/2006GL027207, 2006.
 - Luterbacher, J., Liniger, M. A., Menzel A., Estrella, N., Della-Marta, P. M., Pfister, C., Rutishauser, T., and Xoplaki, E.: Exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics, and its phonological impacts, Geophys. Res. Lett., 34, L12704, doi:10.1029/2007GL029951, 2007.
 - Mehrbach, C., Culberson, C. H., Hawley, J. H., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
 - Michel, S., Treguier, A.-M., and Vandermeirsch, F.: Temperature variability in the Bay of Biscay during the past 40 years, from an in situ analysis and a 3D global simulation, Cont. Shelf Res., 29, 1070–1087, 2009.

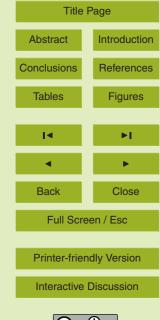
6, 9701–9735, 2009


Forcings on carbonate system in Northeast Atlantic

- Millero, F. J., Lee, K., and Roche, M.: Distribution of Alkalinity in the Surface Waters of the Major Oceans, Mar. Chem., 60, 111–130, 1998a.
- Millero, F. J., Dickson, A. G., Eischeid, G., Goyet, C., Guenther, P., Johnson, K. M., Key, R. M., Lee, K., Purkenson, D., Sabine, C. L., Schottle, R. G., Wallace, D. W. R., Lewis, E., and Winn, C. D.: Assessment of the quality of the shipboard measurements of total alkalinity on the WOCE Hydrographic Program Indian Ocean CO2 survey cruises 1994–1996, Mar. Chem., 63, 9–20, 1998b.
- Monterey, G. and Levitus, S.: Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas, NESDIS 14, Washington D.C., 96 pp, 1997.
- Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22(4), 709–722, 1977.
 - Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers, Global Biogeochem. Cycles, 14, 373–387, 2000.
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., and Sarmiento, J. L.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686, 2005.
- Paasche, E.: A review of the coccolithophorid Emiliana huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, 40(6), 503–529, 2002.
 - Padin, X. A., Navarro, G., Gilcoto, M., Rios, A. F., and Pérez, F. F.: Estimation of air-sea CO₂ fluxes in the Bay of Biscay based on empirical relationships and remotely sensed observations, J. Mar. Syst., 75, 280–289, 2009.
 - Padin, X. A., Castro, C. G., Ríos, A. F., and Pérez, F. F.: fCO₂^{SW} variability in the Bay of Biscay during ECO cruises, Cont. Shelf Res., 28, 904–914, 2008.
 - Padin, X. A., Vázquez-Rodríquez, M., Ríos, A. F., and Pérez, F. F.: Surface CO₂ measurements in the English Channel and Southern Bight of North Sea using voluntary observing ships, J. Mar. Syst., 66, 297–308, 2007.
 - Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel Program Developed for CO₂ System Calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006.

6, 9701–9735, 2009

Forcings on carbonate system in Northeast Atlantic



- Prowe, A. E. F., Thomas, H., Pätsch, J., Kühn, W., Bozec, Y., Schiettecatte, L., Borges, A. V., and de Baar, H. J. W.: Mechanisms controlling the air–sea CO₂ flux in the North Sea, Cont. Shelf Res., 29, 1801–1808, 2009.
- Robertson, J. E., Robinson, C., Turner, D. R., Holligan, P., Watson, A. J., Boyd, P., Fernandez, E., and Finch, M.: The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991, Deep-Sea Res. I, 41, 297–314, 1994.
- Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H. Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO₂, Science, 305, 367–371, 2004.
- Sambrotto, R. N., Savidge, G., Robinson, C., Boyd, P., Takahashi, T., Karl, D. M., Langdon, C., Chipman, D., Marra, J., and Codispoti, L.: Elevated consumption of carbon relative to nitrogen in the surface ocean, Nature, 363, 248–250, 1993.
 - Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.: Simulated response of the ocean carbon cycle to anthropogenic climate warming, Nature, 393, 245–249, 1998.
- Schuster, U., Watson, A. J., Bates, N. R., Corbière, A., Gonzalez-Davila, M., Metzl, N., Pierrot, D., and Santana-Casiano, M.: Trends in North Atlantic sea-surface fCO₂ from 1990 to 2006, Deep-Sea Res. II, 56, 620–629, 2009.
 - Schuster, U. and Watson, A. J.: A variable and decreasing sink for atmospheric CO₂ in the North Atlantic, J. Geophys. Res., 112, C11006, doi:10.1029/2006JC003941, 2007.
 - Somavilla, R., González-Pola, C., Rodriguez, C., Josey, S. A., and Sánchez, R. F.: Large changes in the hydrographic structure of the Bay of Biscay after the extreme mixing of winter 2005, J. Geophys. Res., 114, C01001, doi:10.1029/2008JC004974, 2009.
 - Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., and Wanninkhof, R.: Constraining global air-sea gas exchange for CO₂ with recent bomb CO₂ measurements, Global Biogeochem. Cycles, 21, GB2015, doi:10.1029/2006GB002784, 2007.
 - Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans, Deep-Sea Res. II, 56, 554–577, 2009.
 - Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.,

6, 9701–9735, 2009

Forcings on carbonate system in Northeast Atlantic

- Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO₂ flux based on climatological surface ocean pCO₂ and seasonal biological and temperature effects, Deep-Sea Res. II, 49, 1601–1622, 2002.
- Thomas, H., Prowe, A. E. F., Lima, I. D., Doney, S. C., Wanninkhof, R., Greatbatch, R. J., Schuster, U., and Corbière, A.: Changes in the North Atlantic Oscillation influence CO₂ uptake in the North Atlantic over the past 2 decades, Global Biogeochem. Cycles, 22, GB4027, doi:10.1020/2007GB003167, 2008.
- Tseng, C.-M., Wong, G. T. F., Chou, W.-C., Lee, B.-S., Sheu, D.-D., and Liu, K.-K.: Temporal variations in the carbonate system in the upper layer at the SEATS station, Deep-Sea Res. II, 54, 1448–1468, 2007.
- Tyrrell, T. and Young, J. R.: Coccolithophores, in: Encyclopedia of Ocean Sciences, Academic Press, pp. 3568–3576, 2009.
- Tyrrell, T., Schneider, B., Charalampopoulou, A., and Riebesell, U.: Coccolithophores and calcite saturation state in the Baltic and Black Seas, Biogeosciences, 5, 485–494, 2008, http://www.biogeosciences.net/5/485/2008/.
- Vantrepotte, V., Brunet, C., Mériaux, X., Lécuyer, E., Velluci, V., and Santer, R.: Bio-optical properties of coastal waters in the Eastern English Channel, Estuarine, Coastal and Shelf Science, 72, 201–212, 2007.
- Wanninkhof, R., Lewis, E., Feely, R. A., and Millero, F. J.: The optimal carbonate dissociation constants for determining surface water pCO2 from alkalinity and total inorganic carbon, Mar. Chem., 65, 291–301, 1999.

20

- Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373–7382, 1992.
- Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
- Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.: Total Alkalinity: the explicit conservative expression and its application to biogeochemical processes, Mar. Chem., 106, 287–300, 2007.
- Wollast, R. and Chou, L.: The carbon cycle at the ocean margin in the northern Gulf of Biscay, Deep-Sea Res. II, 48, 3265–3293, 2001.
- Zeebe, R. E. and Wolf-Gladrow, D. A.: CO₂ in seawater: equilibrium, kinetics, isotopes, Elsevier Oceanography Series 65, Amsterdam, 346 pp, 2001.

BGD

6, 9701–9735, 2009

Forcings on carbonate system in Northeast Atlantic

C. Dumousseaud et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

■ Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Crossing dates (Portsmouth to Bilbao) between 2005 and 2007.

Date	DIC and TA samples	Date	DIC and TA samples
26 Sep-29 Sep 2005	34 (DIC only)	18 Oct-19 Oct 2006	39
14 Dec-15 Dec 2005	33	10 Feb-11 Feb 2007	34
28 Feb-2 Mar 2006	40	4 Apr-5 Apr 2007	33
10 Apr-11 Apr 2006	21	10 May-11 May 2007	28
10 May-12 May 2006	15	4 Jun-6 Jun 2007	32
12 Jun-15 Jun 2006	27	10 Jul-12 Jul 2007	19
9 Jul-11 Jul 2006	16		

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

C. Dumousseaud et al.

Title Page

Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I∢	►I	
- 4	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

Table 2. Observed and estimated seasonal amplitude of DIC (differences based on the nitrate and DIC maximum in winter and the fluorescence and O_2 anomaly maximum in spring) for the periods September 2005 to July 2006 and October 2006 to July 2007.

Year	Region	Δ Nitrate (μ mol I ⁻¹)	ΔDIC ($\mu mol kg^{-1}$)	Δ DIC (μ mol kg ⁻¹) from 8.4 C:N ratio	Predicted/observed ratio
	Central English Channel	7.3	50	61	1.22
	Western English Channel	7.2	58	60	1.04
2005/	Ushant	6.2	63	52	0.82
2006	Shelf Break	8.3	61	70	1.15
	Northern Bay of Biscay	8.0	71	67	0.95
	Southern Bay of Biscay	7.2	68	60	0.89
Averag	je 2005/2006	7.4	62	62	
	Central English Channel	5.2	36	44	1.21
2006/	Western English Channel	5.3	45	44	0.99
2007	Ushant	5.4	39	45	1.16
	Shelf Break	4.5	25	38	1.48
	Northern Bay of Biscay	3.9	29	33	1.12
	Southern Bay of Biscay	4.0	36	34	0.94
Averag	je 2006/2007	4.7	35	40	

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

Title Page				
Abstract	Introduct			
Conclusions	Reference			
Tables	Figures			
I₫	►I			
•	•			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				

Table 3. Observed and estimated inter-annual differences of DIC (differences based on the nitrate maximum in winter) between the winters of 2005/2006 and 2006/2007.

Region	Δ Nitrate (μ mol I ⁻¹)	ΔDIC (μ mol kg ⁻¹)	Δ DIC (μ mol kg ⁻¹) from 8.4 C:N ratio	Predicted/observed ratio
Central English Channel	1.4	12.7	11.6	0.92
Western English Channel	1.9	17.7	15.6	0.88
Ushant	2.7	20.7	22.9	1.11
Shelf Break	3.7	28.6	31.5	1.10
Northern Bay of Biscay	4.1	26.2	34.3	1.31
Southern Bay of Biscay	3.1	23.8	26.3	1.11

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

Title Page				
Abstract	Introduct			
Conclusions	Reference			
Tables	Figure			
I◀	►I			
■	•			
Back	Close			
Full Scr	een / Esc			
Printer-frie	ndly Versior			
Interactive Discussion				

Table 4. Effect of varying wind speed (m s⁻¹), temperature (°C) and DIC concentration $(\mu \text{mol kg}^{-1})$ on the air-sea CO₂ flux calculation in mmol m⁻² d⁻¹. Fluxes were calculated according to Eq. (1). The oceanic pCO₂ values were calculated from DIC, TA, salinity, and temperature data using the CO₂SYS program. The calculation considered only one varying parameter at a time while all other parameters were considered constant: TA=2350 µmol kg⁻¹; S=35; T=16; wind speed=8 m s⁻¹; DIC=2100 μ mol kg⁻¹; and atmospheric ρ CO₂=380 μ atm.

Varying parameter	Season	Value	Flux calculated	Seasonal difference	Flux difference
	Winter 2005/2006	10	-1.5		
Wind speed (m s ⁻¹)	Summer 2006	6	-0.6	4	+0.9
	Winter 2006/2007	11	-1.8		
	Summer 2007	8	-1.0	3	+0.7
	Winter 2005/2006	10.6	-4.2		
Temperature (°C)	Summer 2006	18.6	+1.5	8.0	+5.7
	Winter 2006/2007	13.4	-2.4		
	Summer 2007	16.8	+0.1	3.4	+2.5
	Winter 2005/2006	2131	+2.7		
DIC (μ mol kg ⁻¹)	Summer 2006	2064	-3.5	67	-6.2
	Winter 2006/2007	2111	+0.5		
	Summer 2007	2065	-3.5	46	-4.0

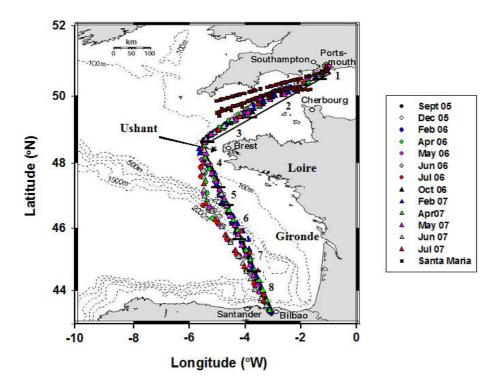
6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

roductio

ferences


igures

Close

Title Page		
Abstract	Introdu	
Conclusions	Refere	
Tables	Figu	
I◀	•	
4	•	
Back	Clos	
Full Screen / Esc		

Printer-friendly Version

Fig. 1. Location of the FerryBox route and sub-regions associated: (1) Portsmouth Harbour; (2) Central English Channel; (3) Western English Channel; (4) Ushant tidal front; (5) Shelf break; (6) Northern Bay of Biscay; (7) Southern Bay of Biscay; (8) Iberian Shelf. The sampling positions for each crossing are shown as well as the MV *Santa Maria* track (figure adapted from Kelly-Gerreyn et al., 2006).

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

C. Dumousseaud et al.

Printer-friendly Version

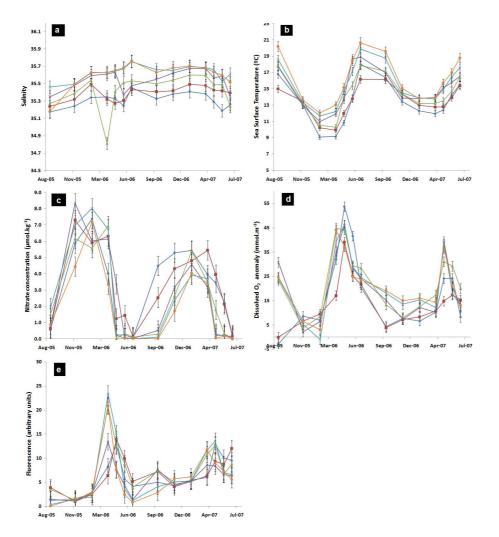
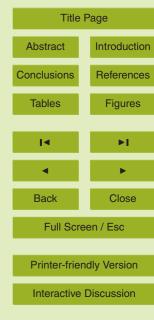



Fig. 2.

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

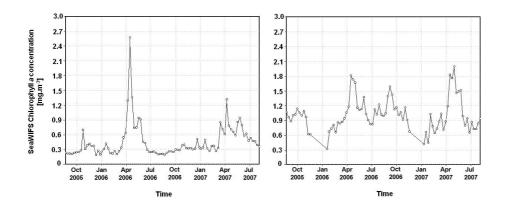
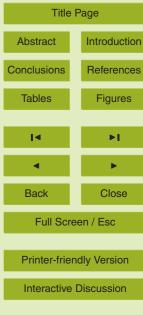


Fig. 2. Monthly mean of **(a)** sea surface salinity, **(b)** sea surface temperature (°C), **(c)** surface nitrate concentration (μ mol l⁻¹), **(d)** dissolved oxygen anomaly (mmol m⁻³) and **(e)** fluorescence (arbitrary units) distribution averaged for each region: Central English Channel (dark blue); Western English Channel (red); Ushant (green); Shelf Break (purple); Northern Bay of Biscay (light blue); Southern Bay of Biscay (orange). The error bars represent the standard deviation for each mean. Data points are linearly interpolated between sampling points to allow a clear distinction of observations between regions. It should not be assumed that the interpolation provides an accurate estimate of the missing data.

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic


Fig. 3. Chlorophyll-*a* distribution (8-days average) for the Bay of Biscay area (left) and the English Channel area (right) between September 2005 and July 2007. Graphs generated by NASA's Giovanni (giovanni.gsfc.nasa.gov).


9731

BGD

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

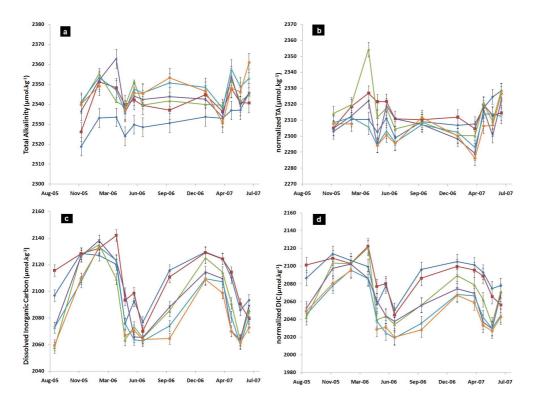


Fig. 4. Monthly mean concentrations (μ mol kg⁻¹) of (a) TA, (b) nTA, (c) DIC and (d) nDIC: Central English Channel (dark blue); Western English Channel (red); Ushant (green); Shelf Break (purple); Northern Bay of Biscay (light blue); Southern Bay of Biscay (orange). Each data point represents the average of several measurements made within one part of the transect (Fig. 1). The error bars represent the standard deviation of each mean. Data points are linearly interpolated between sampling points to allow a clear distinction of observations between regions. It should not be assumed that the interpolation provides an accurate estimate of the missing data.

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

Close

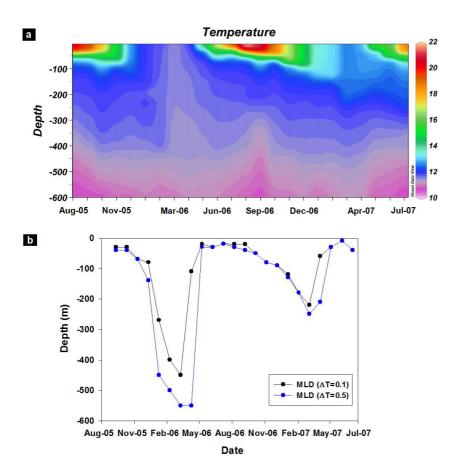


Fig. 5. (a) Argo float 6900362 temperature data for the Bay of Biscay for the period between July 2005 and April 2008 in the upper 600 m, (b) and mixed layer depths (MLD) calculated for the Argo float 6900362 data with ΔT (depth-surface) of -0.1° C and -0.5° C (http://www.coriolis. eu.org/cdc/argo.htm).

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.

Introduction

References

Figures

▶I

Close

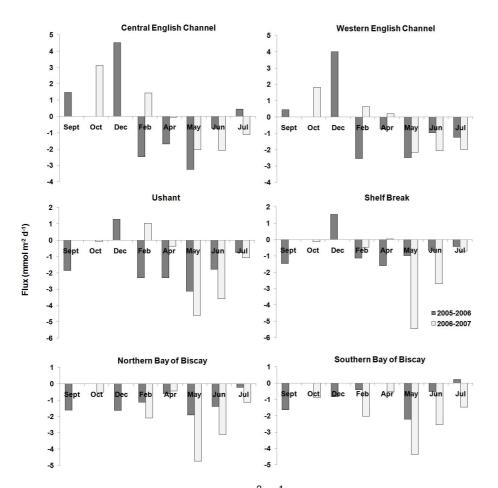
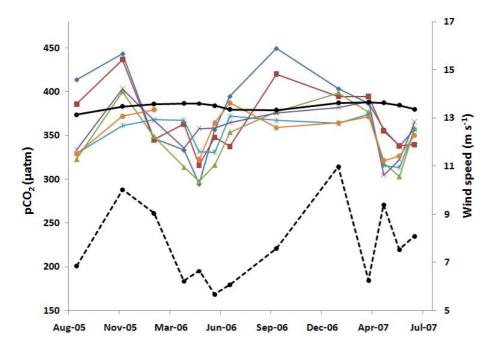


Fig. 6. Calculated air-sea CO₂ fluxes (mmol m⁻² d⁻¹; negative values indicate a net flux into the sea) for each region in 2005/2006 (dark grey) and 2006/2007 (light grey).

6, 9701-9735, 2009

Forcings on carbonate system in **Northeast Atlantic**

C. Dumousseaud et al.


Introduction

References

Figures

Title Page				
Abstract	Introducti			
Conclusions	Referenc			
Tables	Figures			
I◀	►I			
■	•			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				

Fig. 7. Monthly mean calculated sea surface pCO_2 (μ atm) for each region (colored in upper plot with left axis), atmospheric pCO_2 data (μ atm; solid black line in upper plot with left axis), and wind speed data ($m \, s^{-1}$; dotted black line in lower plot with right axis). Colors used in the upper plot indicate: Central English Channel (dark blue); Western English Channel (red); Ushant (green); Shelf Break (purple); Northern Bay of Biscay (light blue); Southern Bay of Biscay (orange).

6, 9701-9735, 2009

Forcings on carbonate system in Northeast Atlantic

